| weakest acid | HF | HI | HCI | | |--|---------------------------------------|---------------------------------------|--|--------| | Weakest Acid | F C OH | H H OH | CI OH | | | Requires a molar equivalent of acid | Ester hydrolysis | Lactone hydrolysis | Lactam hydrolysis | | | H ₃ C | 7,7-dimethyl-
bicyclo[3.2.1]octane | 2,2-dimethyl-
bicycle[1.2.3]octane | 6,6-dimethyl-
bicycle[3,2,1]octane | | | Not an equilibrium reaction | Acid hydrolysis of an acetal | Acid hydrolysis of a nitrile | Acid hydrolysis of a lactone | | | N/A | | | | | | Product of a <u>crossed</u>
Claisen condensation | O.J.O | 2 | anto | | | Decarboxylates
upon acid
hydrolysis and
neating | NO COM | N=C OH | OH CHIN | In all | | Adds 1,4 to | H ₃ C-MgI | 000 | H ₂ C - C - CH ₃ | | | he kinetic anion | oj. | OH OH | (4) | | 2. (20 Pts) Beta lactams are found in important antibiotics such as penicillin and cephalosporin. Please write the products you predict from exhaustive hydrolysis of the β -lactam below in hot aqueous acid; then use the curved arrow convention to show the step by step mechanism for that reaction. *Please* be neat! 3. (10 pts) Please complete the following equations by supplying the missing products, reactants or conditions: ## 4. N/A 5. (10 Pts) Homework problem 17.32 Give the expected organic products when phenylacetic acid, PhCH $_2$ COOH, is treated with each reagent: ## ALL ON OTHER SHEET . 6. (10 pts) Using only the substances in your stock room (on cover page) as sources of carbon, show a synthetic path to the compounds below. You may use any other substances you choose to help in the synthesis, but all of the carbon in the product must come from the stock room. I encourage you to look for the signatures of reactions we have studied and to work backwards. 7. (10 pts) Using only the substances in your stock room (on cover page) as sources of carbon, show a synthetic path to the compounds below. You may use any other substances you choose to help in the synthesis, but all of the carbon in the product must come from the stock room. I encourage you to look for the signatures of reactions we have studied and to work backwards. 8. (10 pts) Using only the substances in your stock room (on cover page) as sources of carbon, show a synthetic path to the compounds below. You may use any other substances you choose to help in the synthesis, but all of the carbon in the product must come from the stock room. I encourage you to look for the signatures of reactions we have studied and to work backwards. ## SYNTHESIS !